CHAPTER I - Meeting the Kolibri
The Flettner Fl-282 Kolibri, a single seat open cockpit intermeshing rotor synchropter, was the World's first mass produced helicopter and the first helicopter to land on a ship. Today one can say without exaggeration that it was the best helicopter of its day. It was actually an improved version of the previously built Flettner Fl-265, a pioneering example of a synchropter with two intermeshing rotors. The exact date on which the RLM issued the development contract for the Fl-282 is not really known. It can be assumed with certainty, however, that design work was begun in 1939 while testing of the Fl-265 was under way. All the test results and experience from the previously built Fl-265 were applied to the design of the Fl-282. By mid-August 1941 work on the Fl 282 V1 had progressed to the point where it could be used on the ground as a transmission unit test bed. The test bed was anchored but could climb the length of the restraint to a certain height and hover. 125 hours and 39 minutes were spent in these tests, which lasted until November 21st 1941. In the event of the destruction of the V1 or a lengthy interruption of testing due to some other problem, it was planned to use the V4 as a replacement test bed. First free flight was made by the V2 on October 30th 1941. At the controls was test pilot Ludwig Hoffmann, who had joined Flettner as the successor to company pilot Perlia. Flight tests resumed in March 1942 following design changes to the cardan shaft; the tests revealed a significant improvement in the helicopter's handling. The Fl-282 V2 was taken out of service on May 25th 1942; the aircraft's transmission & engine were removed for use in other prototypes. Test pilot Ludwig Hoffmann carried out two altitude flights in the Fl-282 V3 on April 27th 1942. On the first he reached a height of 3500 meters over the takeoff point and on the second attempt 3800 meters in 36 minutes (from 15:17 to 16:10 hours).
In following pictures, the Fl-282 prototype helicopters. The V2 (registered as GF-YB) with fully glazed cockpit, completed its first flight on October 30th 1941 and the V3 (registered as GF-YC) had "H" shaped horizontal stabilizers with end plates. The first three prototypes ("A" series) had fully enclosed cabins made up of a series of optically flat plexiglass panels, faired-in rotor pylons and well-contoured fuselages. The V3 version was fitted with endplate auxiliary fins and a long underfin beneath the rear fuselage. Later machines had more utilitarian bodies. Some ("B-0" series) had a completely open pilot's seat, some ("B-1" series) had semi-enclosed cockpits by flat plexiglass panels and finally some others ("B-2" series) had cockpits enclosed by combination of plexiglass & wooden sidewalls.
The idea of the helicopter was new at that time and Anton Flettner and his team made a lot of efforts to convince the German Air Ministry that it's a good product. One of these efforts was to take an average German housewife and teach her to fly the new helicopter. As seen into following photograph, they finally proved that the vehicle was extremely stable and very easy to fly. So easy, that an average German housewife with no previous flying experience, managed to control the Fl-282 V22 (registered as CI-TV) helicopter, after only 3 hours of flight training.
The fuselage was constructed from truss-type welded steel tube, covered with doped fabric. It was fitted with a fixed non-retractable tricycle type undercarriage, with the braced fixed nose wheel with VDM oil shock absorber leg coupled with the rudder foot pedals for steering. Nose wheel was equipped with a 350x150 mm tire and main gear with 465x165 mm tires. The rectangular outline with rounded tips rotor blades were made by tubular steel spar with riveted-on wooden ribs and plywood skin with fabric covering and axes of both rotors were angled outboard at 12° from the vertical. Seen from above, the right rotor rotates clockwise and the left rotor counter clockwise. At the rear end of the fuselage, a two-part horizontal stabilizer with single spar was provided for trimming purposes and a rudder fin of very generous area. This large area was necessary because much of it was ineffective due to the poor aerodynamic shape of the fuselage causing rearwards flow separation and turbulence. It was constructed by tubular steel spar with riveted-on wooden ribs, plywood leading edge & fabric-covered. Steering of the Fl-282 was by a combination of the rudder and differential collective pitch change on the two rotors, but only the rudder could give steering during autorotation since collective pitch was then ineffective (another reason for the large rudder area). Rudder fin was made of wood and covered by fabric, with 40° deflection. The vertical stabilizer and the elevators were also made of wood, with plywood leading edge and fabric covering, bolted to fuselage frame.
It was equipped with flight and navigation instruments such as an ASI - AirSpeed Indicator, an altimeter, a VSI - Vertical Speed Indicator, a turn & bank indicator, RPM indicator for rotors, rotor blade angle indicator, a master compass and a dashboard clock. Radio & signalling equipment consisted of a FuG 19 ultra short wave radio installation. Back type parachute, first aid kit, signal flare pistol and one-man inflatable raft were also present. In following pictures, the instrument panel of the first three prototype helicopters with fully enclosed cabins made up of a series of optically flat plexiglass panels.
The Flettner Fl-282 Kolibri was equipped with a Bramo Siemens Halske SH-14A, 7-cylinders radial engine of 119 kW (160 hp) mounted in the center of the fuselage, with a transmission unit on the front of the engine from which a drive shaft ran to an upper gearbox, which then split the power to a pair of opposite drive shafts to turn the rotors. The SH-14A was an already tried engine design that only required servicing every 400 operating hours.
A drive shaft with universal joints took the drive from the engine transmission unit to the upper transmission unit, which consisted of gears and shafts connecting the two rotor shafts. The final cross-shaft between the two rotor shafts was fitted with a free wheeling unit to disconnect the engine drive, and also with a rotor brake. On the drive-shaft from the engine, a friction disc clutch was fitted which was used for running up the rotors until there was no slippage, when a positive dog-type clutch, on the same shaft, was then engaged. Total reduction through all the transmission units was 12.2 to 1. Cooling air for the enclosed engine was drawn in through openings beneath the fuselage by an eight blade wooden cooling fan with direct drive from the engine and a high pressure air tank was connected to the engine cylinders through a distributor for starting.
The two 2-blade rotors, which were synchronized to be parallel in the 45° position, were mounted on shafts having an included angle of 24° between them and an inclination forward of 6°. The rotor blades consisted of wooden ribs mounted on tubular steel spars with a covering of plywood followed by fabric. Flapping and dragging hinges were fitted, the latter having friction dampers. A centrifugally operated blade pitch governor held the rotor rpm within prescribed limits, the governor being driven through clutches from the rotor transmission. In order to ensure that power-off autorotation was not lost, the governor was set for a minimum rotor speed of 160 rpm. With the use of his collective pitch lever, the pilot could over ride the governor but only to increase rpm. Under certain conditions, self-excited oscillations could occur in the rotor; this happened in flight on one occasion when an Fl-282 was being flown with a high collective pitch and the low rotor speed of 140 rpm (compared with the recommended 175 rpm). Vibration became so severe that the pilot prepared to bail out, but, before he could do so, the machine went into autorotation and the vibration ceased.
The Fl-282 was more highly developed and flew more hours than any other German helicopter, and very extensive tests and measurements were made of all flight aspects. Most of this test work was done by Anton Flettner's chief pilot Oberleutnant (Luftwaffe 1st Lieutenant) Hans E. Fuisting, who also undertook blind flying and trained many of the 50 pilots who learned to fly the Fl-282 Kolibri. Other test pilots participated test pilot FliegerStabsingenieur (Luftwaffe Major) Gerhard Geike, Dipl. Ins. Hans Fischer and Dipl. Ins. C. Bode. Some new pilots ran into trouble when flying near the ground, because, as they turned with the wind, they lost lift and struck the ground. One new pilot had a fatal accident when flying his Fl-282 blind in cloud, and the assumed cause of the accident was that the machine had been dived and the controls then pulled back so violently that the blades were forced into each other or into the tail. The diving speed thereafter was restricted to 175 km/h. On occasions, the Kolibri was landed autogyro way and without the use of collective pitch. This was done by vertically descending, diving nose-down and then pulling back on the controls to land. Unfortunately, by using this landing technique without the use of collective pitch, on (at least) one occasion, the tail boom hit the ground and was damaged.
As seen into following two photographs, the CJ-SK registered Fl-282 V17 helicopter, following a crash-landing at Travemünde, on April 13rd 1944, with test pilot FliegerStabsingenieur (Luftwaffe Major) Gerhard Geike behind controls who replaced the main test pilot Fliegerstabsingenieur Dipl. Ins. Hans Fischer after he was badly hurt in a Dornier Do-217 crash.
Extremely manoeuvrable and very stable, even in gusty conditions, the machine could be flown hands-off in forward flight above 60 km/h for indefinite periods by making an adjustment to neutralize the loads on the controls. However, in forward flight at speeds below 60 km/h there was some longitudinal instability, which reached a maximum at about 40km/h. Another slight criticism of the Fl-282 was that it vibrated rather badly while the rotor was running up on the ground, but this vibration decreased upon lifting off, although there was still a certain amount of vibration transmitted to the control column, which was sluggish and tended to overshoot the requisite amount of movement. Although many of the mechanical components were unnecessarily complicated and heavy, the general design and workmanship were of excellent quality.
Since taxiing under its own power was strictly forbidden, the Fl-282 V12 registered as CJ-SF seen in following picture, pushed back by ground personnel. This rule imposed because the non vertical angled rotor hubs resulted in the blade tips at the sides of the craft being around human body height and made the craft dangerous to approach from the ground whilst the blades were spinning. In addition, the blades could be damage by contact with the ground. At heliports these two problems could be overcome, but at unprotected sites this would be a concern. So, they had a simple rule that ground crew could not approach at that time or only directly from the front.
In following picture, Emil Arnolt (left) chief designer at Anton Flettner Flugzeugbau GmbH, test pilot Oberleutnant (Luftwaffe 1st Lieutenant) Hans E. Fuisting and a mechanic (name unknown), in front of company’s factory plant. Next photograph, Emil Arnolt’s family (wife & kids) having their first contact with the new helicopter. Pictures provided by Carsten Arnolt, grandson of Emil Arnolt.
Aceasta postare a fost editata de Nick_Karatzides: 11 August 2014 - 12:46 AM